当前位置:
首页 > 小学信息技术教研 > 学科交流

机器学习的数据准备:为什么它如此重要,我们应该怎么做?

发布者:cj_sfy   发布时间:2019-11-14 08:34:03   点击数:

编码是成功的业务模型的前提。

建立成功的AI / ML模型有3个方面:算法,数据和计算。

虽然建立准确的算法和计算技能的应用是过程的一部分,但这是什么基础呢?

使用正确的数据奠定基础

从自动驾驶汽车等基于AI的大规模技术革命到构建非常简单的算法,您都需要正确格式的数据。实际上,特斯拉和福特一直在通过行车记录仪,传感器和倒车摄像头收集数据,并对其进行分析以制造出无人驾驶和全自动汽车,以确保安全的道路。

收集数据之后的下一步是准备数据的过程,这将成为本文的重点,并将在后续部分中详细讨论。在深入研究数据准备过程的概念之前,让我们首先了解其含义。作为基于AI创新的大脑的数据科学家,您需要了解数据准备的重要性,以实现模型所需的认知能力。

什么是数据准备?

数据是每个组织的宝贵资源。但是,如果我们不进一步分析该声明,它可能会否定自己。 企业将数据用于各种目的。从广义上讲,它用于制定明智的业务决策,执行成功的销售和营销活动等。但是,这些不能仅用原始数据来实现。

数据只有经过清洗,贴标签,注释和准备后,才能成为宝贵的资源。数据经过适应性测试的各个阶段后,便最终具备进行进一步处理的资格。处理可以采用多种方法-将数据提取到BI工具,CRM数据库,开发用于分析模型的算法,数据管理工具等。

现在,重要的是您从此信息的分析中收集的见解是准确且值得信赖的。实现此输出的基础在于数据的健康状况。此外,无论您是构建自己的模型还是从第三方那里获得模型,都必须确保标记,扩充,干净,结构化的整个过程背后的数据都经过标记,概括,即数据准备。

正如Wikipedia所定义的,数据准备是将原始数据(可能来自不同的数据源)操纵(或预处理)为可以方便,准确地进行分析的形式的行为,例如出于商业目的。数据准备是数据分析项目的第一步,可以包括许多离散任务,例如加载数据或数据摄取,数据融合,数据清理,数据扩充和数据交付。

机器学习数据准备的重要性

根据Cognilytica的最新研究,其中记录并分析了组织,机构和最终用户企业的响应,以识别在标记,注释,清理,扩充和丰富机器学习模型的数据上花费了大量时间。

数据科学家80%以上的时间都花在准备数据上。尽管这是一个好兆头,但考虑到随着良好的数据进入建立分析模型,准确的人会得到输出。但是,理想情况下,数据科学家应该将更多的时间花在与数据交互,高级分析,培训和评估模型以及部署到生产上。

只有20%的时间进入流程的主要部分。为了克服时间限制,组织需要利用用于数据工程,标记和准备的专家解决方案来减少在清理,扩充,标记和丰富数据上花费的时间(取决于项目的复杂性)。

这将我们带入了“ 垃圾中的垃圾”概念,即输出的质量取决于输入的质量。

数据准备过程

以下是针对机器学习模型的数据准备过程的简要介绍:

数据提取数据工作流程的第一阶段是提取过程,通常是从非结构化源(如网页,PDF文档,假脱机文件,电子邮件等)中检索数据。部署从网络中提取信息的过程称为网络刮。

数据概要分析是检查现有数据以提高质量并通过格式带来结构的过程。这有助于评估质量和对特定标准的一致性。当数据集不平衡且配置不当时,大多数机器学习模型将无法正常工作。

数据清理可确保数据干净,全面,无错误,并提供准确的信息,因为它不仅可以检测文本和数字的异常值,还可以检测图像中无关的像素。您可以消除偏见和过时的信息,以确保您的数据是干净的。

数据转换是对数据进行转换以使其均匀。地址,名称和其他字段类型之类的数据以不同的格式表示,数据转换有助于对此进行标准化和规范化。

数据匿名化是从数据集中删除或加密个人信息以保护隐私的过程。

数据扩充用于使可用于训练模型的数据多样化。在不提取新信息的情况下引入其他信息包括裁剪和填充以训练神经网络。

数据采样识别大型数据集中的代表性子集,以分析和处理数据。

特征工程是将机器学习模型分类为好模型还是坏模型的主要决定因素。为了提高模型的准确性,您可以将数据集合并以将其合并为一个。

部门概况

行政部门

业务部门