当前位置:
首页 > 教学研究 > 小学教研 > 学科教学 > 数学 > 资源共享

浅谈小学数学核心素养的认识

发布者:cj_jyk   发布时间:2017-08-31 08:39:45   点击数:

浅谈小学数学核心素养的认识

摘要:数学是一种文化,数学文化对人的影响表现为人的数学素养。随着经济、社会、文化变革的加剧,人们越来越多地认识到数学文化在生活中的重要性。企业家的“经济头脑”、科学家的“数字地球”,现代人生活工作的“现代化”,种种迹象表明,一个数学化的时代已经展现在眼前,那种远离数学、远离数学生活,固守过去传统的人不仅会被时代所淘汰,而且连基本的生存也潜藏危机。作为一名数学教师,有责任唤醒国人对数学的关注,在数学教育和提高数学素养上担当起自己应尽的责任。数学学科的核心素养包括抽象能力、推理能力和问题解决能力。小学数学关于“数”的学习贯穿问题解决,让学生在问题解决过程中,感受有关“数”的概念以及实际问题到数学问题的抽象,经历问题的提出、算理的探究等活动,形成较为丰富的抽象和推理活动经验,发展抽象能力和推理能力,进而形成基于抽象与推理的问题解决能力。本文将以小学阶段“数”的学习为例,谈谈如何培养小学生的数学核心素养。关键词:小学数学 数的学习 核心素养

为了全面深化课程改革,20143月,教育部印发《关于全面深化课程改革 落实立德树人根本任务的意见》,明确提出了“核心素养”的概念。数学素养是指人用数学观点、数学思维方式和数学方法观察、分析、解决问题的能力及其倾向性,包括数学意识、数学行为、数学思维习惯、兴趣、可能性、品质等等。数学是一门知识结构有序、逻辑性很强的学科,“是人们对客观世界进行定性把握和定量刻画,逐步抽象概括,形成方法和理论,并进行广泛应用的过程”。数学知识的学习过程,必须遵循数学学科特性,通过不断地分析、综合、运算、判断推理来完成。因此,整个学习过程就是一个数学知识的积累、方法的掌握、运用和内化的过程,同时又是数学思维品质不断培养强化的过程。显然数学的严密有序性、数学知识的内在逻辑性、数学方法的多样性是我们提高数学素养的极其重要的因素。因此,在学习具体知识的过程中,务必注重以问题为载体,注重学生抽象能力、推理能力和应用能力的发展。

一、在“数”的学习中全程贯穿问题解决

恰当的问题情境可以激发学生的学习兴趣,让学生感受到新知学习的意义;通过问题解决,学生不仅可以顺利习得新知,更可以在问题解决过程中提高数学思维水平,提升学习能力。因此,应在“数”的学习中全程贯穿问题解决。 “数”及其运算都是基于现实需要的。自然数是基于现实生活中计数的需要产生的;小数是各种测量活动中不同单位之间换算的产物,也是自然数除法运算结果的自然推广;分数是基于表示非整数的个数的需要产生的,同时又可以用来刻画整数除法的结果、比值等。数的运算更是现实需要的产物,现实情境中产生了数量的比较、归并、分配等问题,自然需要研究数的加减乘除等运算。因此,在“数”及其运算的学习中,务必基于现实问题,让学生从情境中自发地发现、提出、分析和解决问题,自然地习得新知。例如:对于“两位小数的加减法”,苏教版教科书中呈现了如图2所示的情境,课堂教学大致可以用下面几个问题贯穿:

1)你获得了哪些信息?根据这些信息,你能提出哪些一步计算的问题? (2)你能根据小数位数把这些算式分分类吗?

3)这些算式中,哪些比较好算?哪些已经学习过?你能具体算一算吗? (4)下面我们会研究哪些算式?说说你的理由,并与同伴交流。

5)回顾一下,今天提出了哪些问题?已经解决了哪些问题?下面还有哪些问题?整个课堂学习你有什么收获?

从情境入手,经历发现问题、提出问题,进而适当地梳理问题,先行解决简单问题,借助解决简单问题的经验思考较为复杂的问题,最后梳理问题解决的经验这样一个完整的问题解决过程,这样的学习经验对学生来说将终身受用。

二、在“数”的认识学习中感受抽象

抽象就是舍弃事物的非本质属性而抓住事物的本质属性。数学抽象则是从研究对象中抽取出有关数量关系或空间形式的本质属性。因而,数学是一门高度抽象的学科。正因如此,数学成为培养学生抽象能力的很好载体,抽象成为数学学科的核心素养。从现实问题中抽取数学概念、抽象数学问题的过程,都是发展学生抽象能力的好机会。下面以“自然数的认识”为例加以解释。

“数”的认识始于比较,在比较的基础上产生多与少、等与不等的概念,基于“等”的共性形成了抽象的自然数,而认识多与少、等与不等最核心的思想是对应。由于学龄前儿童已经有了丰富的认数经验,教材一般直接呈现一个大的情境,要求学生从中分别看出各种物体的数量,这样做实际上已经跳过了抽象这个环节,但教师最好能够通过一些活动,让学生适度感受其中蕴含的抽象过程。例如:在图形背景中,学生已经发现一些动物一样多,这时可以追问“你怎么知道它们一样多的”,学生可能大多是从数量上比较的,如说“它们都是3个”。然后,可以引导学生从其他角度进行解释,如图3所示,可以引导学生从图形中感受长颈鹿和梅花鹿之间的对应,进而继续引导学生从背景图形中找出和长颈鹿一样多的动物,并将长颈鹿和与它一样多的动物用线一对一地连起来,从而感受相等的本质是能够一一对应。最后可以从背景图形中拖出其他数量是3个的物体的图片覆盖到梅花鹿图片上,让学生思考它们和长颈鹿是不是一样多。在这样的过程中,让学生认识到,具体物品的其他特征无关紧要,这里我们关注的就是它们能不能一一对应,关注的就是它们的个数,在此基础上引出表示这个个数的“3”。 总之,在小学阶段,要注意引导学生经历从具体、直观、现实背景中逐步抽象出数学概念或问题的过程,让学生形成抽象的初步经验,发展初步的抽象能力。但要注意,小学生年龄小,抽象能力较弱,在教学中要把握好抽象的度,更不要强调“抽象”这个抽象的词。

三、在“数”的运算学习中重视推理能力

由一个或几个已知判断推出另一个未知判断的思维形式叫作推理。推理既包括严密的演绎推理,也包括未必那么可靠的合情推理(如类比推理、归纳推理、统计推断等)。演绎推理多用于数学知识的整理,合情推理则有助于数学发现,两者往往协同作用、不可偏废。美国数学教育家波利亚在其数学教育名著《数学与猜想》中指出:一个认真想把数学作为他终身事业的学生必须学习论证推理,这是他的专业也是他那门学科的特殊标志。然而为了取得真正的成就他还必须学习合情推理:或者这是他的创造性工作赖以进行的那种推理。一般的或者对数学有业余爱好的学生也应该体验一下论证推理,虽然他可能不会有机会去直接应用它,但是他应该获得一种标准,依此他能把现代生活中碰到的各种所谓证据进行比较。很多人认为,几何是发展学生推理能力的好载体,实际上,“数”的学习也是发展学生推理能力的很好载体,特别是在运算学习中,可以引导学生参与运算法则、运算规律的建构过程,在理解算理的过程中发展他们的推理能力。

教学“一位小数的加法”,教师一般会首先呈现一个情境,引导学生从情境中得到相应的算式。如呈现下面的问题:一袋妙脆角4.8元,一瓶尖叫2.8元,买1袋妙脆角和1瓶尖叫一共花去多少元?学生不难列出算式4.8+2.8。这是一个新问题,但学生具有一定的生活经验,这些经验成为他们解决问题的重要基础。根据生活经验,学生知道大约花去7元,这个猜测过程中已经蕴含了推理,如“妙脆角靠近5元,加上尖叫28角,肯定得7元多了”。当然,我们需要准确的值,因此,学生可以借助生活经验给出结果76角的解释,这些解释可能是多种多样的:4.8+2.8元,4元与2元合起来是6元,28角合起来是16角,也就是16角;4.8元、2.8元都转化成角就是48角和28角,48角加28角是76角,化成元就是7.6??这些解释本身就是很好的推理过程。在这些解释的基础上,可以进一步引导学生自主总结经验,探究一位小数加法的竖式运算,并说明其中小数点对齐的道理。显然,算理的探求过程是很重要的推理活动过程。

小学数学对人的数学素养的形成起着重要的作用。小学数学自身的特点和规律也为培养人的数学素养提供了可能。小学数学知识结构单一,呈现方式灵活,许多数学思想、数学法则和数学规律往往依附于一定的感性材料而存在,许多数学问题都能够从生活实际中找到原型,甚至有一些数学问题实质上就是日常生活中存在现象的翻版,直接显示出生活意义。小学数学也具有严密的逻辑性,可以促进人的思维的发展,并体现出时代的整体特征。这些因素正是形成数学素养的先决条件。新一轮国家数学课程标准的建立突出体现“基础性,普及性和发展性”,要求“人人学有价值的数学:人人都获得必要的数学”,并且强调“不同的人在数学上得到不同的发展”的理念。

因此,在小学数学教学中,务必紧紧以问题为载体,让学生经历发现、提出、分析和解决问题的全过程,并在交流与反思等活动中更好地外显学生的思维过程,从而更好地培养学生的抽象能力、推理能力、应用意识和应用能力。

 

部门概况

行政部门

业务部门